12^2x-4=1/144

Simple and best practice solution for 12^2x-4=1/144 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 12^2x-4=1/144 equation:



12^2x-4=1/144
We move all terms to the left:
12^2x-4-(1/144)=0
We add all the numbers together, and all the variables
12^2x-4-(+1/144)=0
We get rid of parentheses
12^2x-4-1/144=0
We multiply all the terms by the denominator
12^2x*144-1-4*144=0
We add all the numbers together, and all the variables
12^2x*144-577=0
Wy multiply elements
1728x^2-577=0
a = 1728; b = 0; c = -577;
Δ = b2-4ac
Δ = 02-4·1728·(-577)
Δ = 3988224
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{3988224}=\sqrt{2304*1731}=\sqrt{2304}*\sqrt{1731}=48\sqrt{1731}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-48\sqrt{1731}}{2*1728}=\frac{0-48\sqrt{1731}}{3456} =-\frac{48\sqrt{1731}}{3456} =-\frac{\sqrt{1731}}{72} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+48\sqrt{1731}}{2*1728}=\frac{0+48\sqrt{1731}}{3456} =\frac{48\sqrt{1731}}{3456} =\frac{\sqrt{1731}}{72} $

See similar equations:

| 12^(2x-4)=1/144 | | -2.5(6v+8.5)=25.5-5v | | -4+9+3r=2r+4-4 | | 35+6b=7(86-4) | | 2/3a+12=18 | | x+44=15x | | -14=-8+2a | | -9p+3+4p+7p-4p-4p=0 | | 8-3(2-x)=8 | | -3-6(1-7k)=31 | | 3x^2=5/8 | | x+18=27.4 | | 26x=24x+10 | | 3+6(d-4)=20 | | -6p+3=0 | | 78=3x+18 | | 10−5x(8+3X)= | | 10−5(8+3x)= | | 19x=18x+3 | | 8z+z=8z+3 | | 21=4n+7n | | (6x^-2)^-3=0 | | 19x+2=18x+5 | | 6f-3f=-21 | | G2-10g+14=0 | | 2.6(x)=2x-1 | | 12+14x=8x-12 | | 12+14=8x-12 | | 5w+11=15 | | 3w-6+8w4+50=180 | | -6x/25+95=2x-30 | | x2+12=6x+3 |

Equations solver categories